

UNIVERSITY OF LIFE SCIENCES "KING MIHAI I" FROM Timisoara Multidisciplinary Conference on Sustainable Development 15 – 16 May 2025

STUDY OF MACROPHAGE SURVIVAL DURING CO-CULTIVATION WITH BACTERIA IN A NANOFIBER SCAFFOLD 3D CELL CULTURE **SYSTEM**

Michaela Burvalova^{1*}, Monika Zouharova², Nathália Oderich Muniz³, Ales Pavlik¹, Petr Slama¹

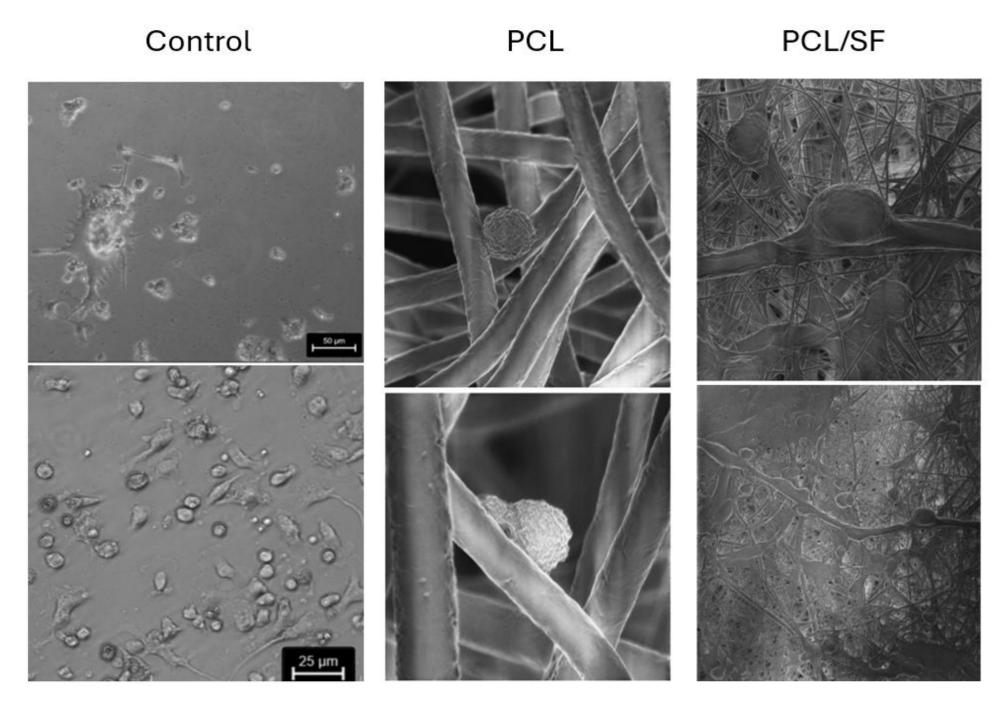
¹Affiliation: Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic ²Affiliation: Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic. ³Affiliation: Biomécanique et Bioingénierie (BMBI) - UMR 7338, University of Technology of Compiègne (UTC), 60280 Compiègne, France. *xburvalo@mendelu.cz

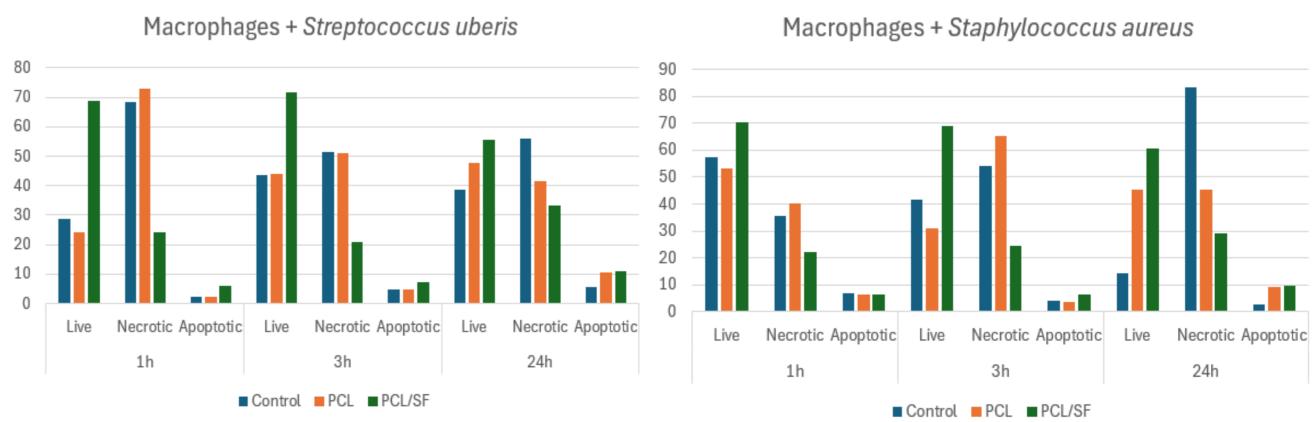
Abstract: This study investigates macrophage survival and apoptosis during co-cultivation with Staphylococcus aureus and Streptococcus uberis on nanofiber scaffolds made from polycaprolactone (PCL) and PCL combined with silk fibroin (PCL/SF), compared to traditional 2D culture. Macrophages, differentiated from CD14+ peripheral blood monocytes using GM-CSF, were analyzed using flow cytometry. Results showed that macrophages on PCL/SF scaffolds had significantly higher survival rates and lower necrosis percentages than those on PCL and 2D cultures, especially under bacterial stress at 1, 3, and 24-hour intervals. The PCL/SF scaffolds provided a superior environment for macrophage growth and resilience, suggesting promising applications for future research and cell culture techniques.

Introduction

Macrophages are essential for engulfing and destroying pathogens, and their resilience under bacterial stress is vital for immune defense. Traditional 2D cultures often lack the complexity of *in vivo* environments. Bovine mastitis, caused by bacteria like S. aureus and Str. uberis, highlights the need for accurate models. Using nanofiber scaffolds to create a 3D culture system can better mimic natural conditions, enhancing cell viability and resilience. This approach is crucial for advancing immune cell research and improving treatments for bovine mastitis.

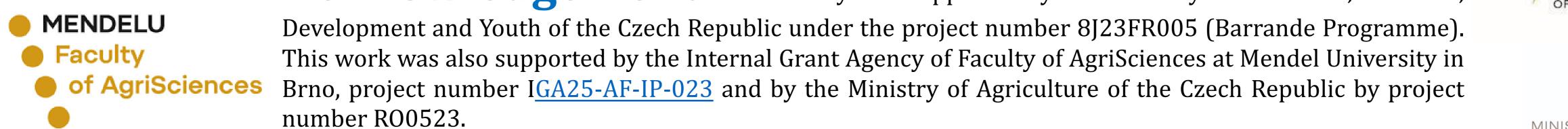
Material and method


CD14+ cells were isolated from bovine blood using gradient centrifugation and magnetic separation. These cells were cultured in RPMI 1640 medium with fetal bovine serum, GM-CSF, and antibiotics at 37°C and 5% CO2. Cultivation was performed on different types of nanofiber membranes (PCL, PCL/SF) and in control 2D cultures. After 7 days of cell differenciation macrophages analyzed using electron microscopy and flow cytometry. Cocultivation with bacterial suspensions was analyzed at 1, 3, and 24 hours.


Results and discussions

Isolated CD14+ cells were successfully differentiated into macrophages. 3D cultivation systems using nanofiber membranes (PCL, PCL/SF) were tested. PCL had poor cell adhesion. Combining PCL with fibroin improved cell adhesion and viability of macrophages.

These macrophages were co-cultivated with S. aureus and Str. uberis. Results showed that macrophages on nanofiber scaffolds were more resilient to bacterial pressure, especially on PCL/SF.


The three-dimensional environment provided by nanofiber scaffolds enhances the physiological relevance of *in vitro* models, making them more relevant to *in vivo* conditions. PCL/SF material improves cell adhesion and viability for macrophages. These findings suggest potential applications studying immune responses and developing more accurate *in vitro* models for disease research.

Conclusions

Our findings confirmed that providing a three-dimensional environment with addition of non-synthetic polymer (silk fibroin) for cultured cells increases the physiological relevance of the *in vitro* model. This relevance can be further enhanced by adding additional factors present in the *in vivo* environment of the organism.

Acknowledgement: This study was supported by The Ministry of Education, Research,

